Correction of phase distortion in spatial heterodyne spectroscopy.
نویسندگان
چکیده
The detailed analysis of measured interferograms generally requires phase correction. Phase-shift correction methods are commonly used and well documented for conventional Fourier-transform spectroscopy. However, measured interferograms can show additional phase errors, depending on the optical path difference and signal frequency, which we call phase distortion. In spatial heterodyne spectroscopy they can be caused, for instance, by optical defects or image distortions, making them a characteristic of the individual spectrometer. They can generally be corrected without significant loss of the signal-to-noise ratio. We present a technique to measure phase distortion by using a measured example interferogram. We also describe a technique to correct for phase distortion and test its performance by using a simulation with a near-UV solar spectrum. We find that for our measured example interferogram the phase distortion is small and nearly frequency independent. Furthermore, we show that the presented phase-correction technique is especially effective for apodized interferograms.
منابع مشابه
Error Analysis, Design and Modeling of an Improved Heterodyne Nano-Displacement Interferometer
A new heterodyne nano-displacement with error reduction is presented. The main errors affecting the displacement accuracy of the nano-displacement measurement system including intermodulation distortion error, cross-talk error, cross-polarization error and phase detection error are calculated. In the designed system, a He-Ne laser having three-longitudinal-mode is considered as the stabiliz...
متن کاملFlatfielding in spatial heterodyne spectroscopy.
Spatial heterodyne spectroscopy (SHS) is a Fourier-transform spectroscopic technique that simultaneously records all path differences using a detector array. Compared to conventional Fourier-transform spectroscopy that measures interferogram samples sequentially in the time domain, SHS is insensitive to a changing scene; however, the effects caused by differences in the detector elements and/or...
متن کاملOQAM – Optical QAM scheme with orthogonal polarization
We present a novel optical quadrature modulation scheme, which applies a QAM on two Laser output signals with orthogonal polarization (OQAM). Transmitter and receiver with heterodyne principle are described. The performance of the scheme is investigated in the presence of Laser phase noise, group velocity and polarization mode distortion of the fiber.
متن کاملImpact of turbulent phase noise on frequency transfer with asymmetric two-way ground-satellite coherent optical links
Bidirectional ground-satellite laser links suffer from turbulence-induced scintillation and phase distortion. We study how turbulence impacts on coherent detection capacity and on the associated phase noise that restricts clock transfer precision. We evaluate the capacity to obtain a two-way cancellation of atmospheric effects despite the asymmetry between up and down link that limits the link ...
متن کاملPhase error correction based on Inverse Function Shift Estimation in Phase Shifting Profilometry using a digital video projector
Fringe Pattern Profilometry (FPP) is 3D surface measuring technique based on triangulation. The utilization of digital projection in FPP system introduces significant phase distortion for Phase Shifting Profilometry (PSP), because of the nonlinear response of digital video projectors, which is referred as gamma distortion. Considering that the distorted phase has a stable function for a referen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied optics
دوره 43 36 شماره
صفحات -
تاریخ انتشار 2004